< 北大、蚂蚁三个维度解构隐私保护机器学习:前沿进展+发展方向_行业资讯_华体育app官网登录|华体会手机版
2025-08-10 行业资讯

  本项目的领导者为李萌,于 2022 年加入北京大学人工智能研究院和集成电路学院创建高效安全计算实验室。他曾任职于美国 Facebook 公司的Reality Lab,作为技术主管主导虚拟现实和增强现实设备中的高效 AI 算法和芯片研究。他的研究兴趣集中于高效、安全人工智能加速算法和芯片,旨在通过算法到芯片的跨层次协同设计和优化,为AI构建高能效、高可靠、高安全的算力基础,曾获 DAC 生成式AI系统设计竞赛第一名、AICAS 大模型系统模块设计竞赛第一名、CCF 集成电路 Early Career Award、欧洲设计自动化协会最佳博士论文等一系列奖项。

  在数据隐私日益重要的 AI 时代,如何在保护用户数据的同时高效运行机器学习模型,成为了学术界和工业界共同关注的难题。

  本文由北京大学助理教授李萌课题组和蚂蚁集团机构的多位研究者共同完成。论文题目及完整作者列表如下:

  团队还建立了一个长期维护的 GitHub 项目,持续收录高质量 PPML 文献,欢迎各位 star,并提出宝贵的意见和补充:

  尽管密码学协议为数据隐私保护提供了严格的安全保证,但其应用于AI计算,仍面临巨大开销。本综述指出当前协议设计主要存在以下核心痛点:1)基于不经意传输(OT)的协议有极高的通信开销和基于同态加密(HE)的协议面临严重计算瓶颈;2)现有协议忽视模型固有的结构特性(如稀疏性、量化鲁棒性),因此缺乏 “模型感知” 的协议设计。

  本综述分别从AI模型的线性算子和非线性算子切入,主要讨论了基于 OT 和 HE 的协议设计和发展脉络。综述中重点回答了在不同场景中,应该使用何种协议以及 HE 编码方式。综述还分析了在交互式和非交互式协议框架下的图级协议,比如秘密分享和 HE 之间的转换、全同态中的自举方案。以下是关于编码方案的总结:

  本综述强调在传统明文机器学习模型中的设计(如 ReLU 剪枝、模型量化)在 PPML 中往往会导致高昂代价。综述系统地归纳了当前 PPML 领域的四类模型层优化策略:1)线性层优化:比如高效卷积设计、低秩分解、线)非线性层 ReLU 和 GeLU 优化:比如多项式近似、剪枝和 GeLU 的替换;3)非线性层 Softmax 优化:比如昂贵算子的替换、KV cache 剪枝、注意力头融合;4)低精度量化,包括 OT 和 HE 友好的量化算法。下表概括了线性层和非线性层的优化方案:

  本综述指出,即便协议和模型层级已得到优化,系统层级若无法 “感知协议特性”,将难以释放真正性能。综述中梳理了两个方向的优化路径:1)编译器设计:从协议特性感知、灵活编码、Bootstrapping支持等方面展开了讨论;2)GPU 设计:分别讨论了操作层面加速与 PPML 系统层面的优化,通过对比现有 GPU 加速实现中典型 PPML 工作负载的执行时间,对有关技术进行了总结。下图是 HE 编译器的梳理:

  本综述强调,仅仅在某一层级优化已难以满足大模型时代对隐私与效率的双重要求。综述提出必须从 “跨层级协同优化” 的角度重新设计 PPML 的方案,未来的研究方向包括:1)协议 - 模型 - 系统协同优化和设计;2)构建面向大模型隐私推理的隐私计算方案;3)面向边缘设备部署的轻量化隐私计算方案。

  值得一提的是,李萌老师课题组近年来围绕上述三个层面,也开展了一系列相关研究工作,欢迎各位相关领域老师、同学多多交流。下图总结了课题组已经发表的相关工作:

  本综述详细讨论了跨层级优化带来的挑战与机遇,分别阐述了模型和协议的系统优化、协议和系统的系统优化。例如模型量化难以直接给 PPML 带来期望的收益,非线性层优化难以带来系统级的效率提升,现代 GPU 加速了明文机器学习,但其有限的精度支持给 HE 所需的高精度模块化算术带来了挑战。

  综述还进一步从线性层和非线性层角度讨论了大模型对 PPML 的独特挑战,并提出除了无需训练的优化方式,还可优先考虑用参数高效微调(比如 LoRA)等技术去构建 PPML 友好的大模型结构。

  特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

  情侣吵架后女子冲出屋拥抱男友,因用力过猛两人双双坠楼,21岁女子头部着地身亡,27岁男友生命垂危

  通报!新疆一干部为掩盖失职失责行为,向136名群众收取项目赔付款11.64万元

  李月汝时隔4场重回首发:4中1仅3+6连续8场未上双 飞翼12战10败

  《编码物候》展览开幕 北京时代美术馆以科学艺术解读数字与生物交织的宇宙节律

CONTACT US
欢迎随时与我们联系